ANKITH MOHAN

712 Appalachian Drive, Apt 5, Blacksburg, VA 24060 (323) 518-8401 \diamond ankithmo@vt.edu \diamond ankith-mohan.github.io

EDUCATION

PhD in Computer Science Virginia Polytechnic Institute and State University, Blacksburg, VA, USA Advisor: Jamie Sikora	2026 (expected)
MS in Computer Science University of Southern California, Los Angeles, CA, USA Advisors: Aiichiro Nakano and Emilio Ferrara Thesis: Alleviating the Noisy Data Problem using Restricted Boltzmann Machines	2020
BE in Information Science and Engineering <i>Ramaiah Institute of Technology</i> , Bengaluru, India	2016

RESEARCH EXPERIENCE

Fujitsu Research of America	May - August, 2022
Research Intern	Sunnyvale, CA
Advisor: Sarvagya Upadhyay	

Virginia Polytechnic Institute and State University	2021 - Present
Graduate Research Assistant	Blacksburg, VA

Advisor: Jamie Sikora

- $\cdot\,$ Developing semi-definite programming techniques for inner approximations to the quantum separability problem.
- \cdot Researching NISQ-based methods to reduce large qubit systems to a size that is amenable for these inner approximation methods.
- Formulating a better quantum equivalent for the Wasserstein semi-metric to improve performance of the quantum Wasserstein Generative Adversarial Network (qWGAN).

University of Southern California	2018 - 2020
Research Assistant	Los Angeles, CA

Advisor: Sze-Chuan Suen

- \cdot Researched on techniques to model the effectiveness of *Pre-exposure prophylaxis* (PrEP) on HIV/AIDS outcomes in Los Angeles county.
- $\cdot\,$ Developed interactive web application that allows online modeling of HIV/AIDS outcomes.
- \cdot Designed end-to-end deep learning pipeline to predict mortality of patients at Sutter Health based on patient characteristics, vitals, labs and interventions.

Information Sciences Institute	January - May, 2019
Directed Research Assistant	Marina Del Rey, CA

Advisors: Robert F Lucas and Jeremy Liu

- · Modeled large-scale reactive molecular dynamics (RMD) simulations data set of MoS_2 monolayer to be able to denoise grain boundaries and defects.
- \cdot Used restricted Boltzmann machines (RBM) and limited Boltzmann machines (LBM) which was sampled using D-Wave adiabatic quantum annealer (AQA).

 \cdot Improved the performance of the LBM by finding techniques to efficiently reassign its hidden units to the qubits of AQA.

TEACHING EXPERIENCE

Introduction to Problem Solving in Computer Science, Fall 2021

JOURNAL ARTICLES

Ankith Mohan, Aiichiro Nakano, and Emilio Ferrara. "Graph signal recovery using restricted Boltzmann machines". *Expert Systems with Applications* 185 (2021): 115635.

Jeremy Liu, Ankith Mohan, Rajiv K. Kalia, Aiichiro Nakano, Ken-ichi Nomura, Priya Vashishta, and Ke-Thia Yao. "Boltzmann machine modeling of layered MoS2 synthesis on a quantum annealer". *Computational Materials Science* 173 (2020): 109429.

Krishnaraj P. M., **Ankith Mohan**, and Srinivasa K.G. "Performance of procedures for identifying influentials in a social network: prediction of time and memory usage as a function of network properties". *Social Network Analysis and Mining* 7, no. 1 (2017): 34.

PRESENTATIONS

Talks

Ankith Mohan. "NISQ Algorithms for Separable Ground States". VT Quantum Information Science Symposium, April 2022.

Posters

Ankith Mohan, Tobias Haug, Kishor Bharti and Jamie Sikora. "Inner Approximations and a NISQ Algorithm for the Quantum Separability Problem". 25th Annual Conference on Quantum Information Processing, March 2022.

TEXTBOOK

Krishnaraj P.M., **Ankith Mohan**, and Srinivasa K.G. *Practical Social Network Analysis with Python*. Springer International Publishing, 2018.

HONORS AND AWARDS

Best Research Award, Department of Computer Science, University of Southern California 2021

OPEN-SOURCE PROJECTS

denoise RBM

https://github.com/ankithmo/denoiseRBM

- Model-agnostic pipeline to recover graph signals by exploiting content-addressable memory property of RBM and the hidden layer representations of a deep neural network (DNN).
- Pipeline can be used for any dataset but is particularly effective for graph-structured datasets.
- · Requires the deep neural network to be trained on *clean* data, data which is free of noise.

estimateMI

https://github.com/ankithmo/estimateMI

· Implementation of Ziv Goldfeld, Kristjan Greenewald, Yury Polyanskiy. (2019) "Estimating Differential Entropy under Gaussian Convolutions".

- \cdot Estimating the mutual information between the input layer and each of the hidden layer representations using a *noisy* DNN, where additive white Gaussian noise (AWGN) is injected to each of these representations.
- $\cdot\,$ Extending the work to estimate information flow in graph neural networks.

Deep Pommerman

https://deep-agents.github.io/

- $\cdot\,$ Solving the game of Pommerman using deep reinforcement learning.
- \cdot Cooperated with five team mates to design both curriculum learning and reward engineering methods to progressively train the game agent.
- $\cdot\,$ Trained agents that used imitation learning or Monte Carlo tree search methods to track and eliminate opponent agents.

SKILLS

Languages

Python, R, Matlab, C++

Libraries

Deep learning: PyTorch, Tensorflow, Theano Geometric deep learning: PyTorch geometric, Deep Graph Library, Graph Nets Quantum computing: PennyLane, Qiskit, Cirq, Tensorflow Quantum Visualization: Dash, R Shiny